FINITE GROUPS WITH SOME SUBGROUPS OF SYLOW SUBGROUPS S-SUPPLEMENTED

HONGWEI BAO and LONG MIAO

Department of Mathematics and Physics Bengbu College Bengbu 233000 P. R. China e-mail: big_bao2003@163.com

Department of Mathematics Yangzhou University Yangzhou 225002 P. R. China

Abstract

A subgroup H is called s-supplemented in G, if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_{SG}$, where H_{SG} is the largest subnormal subgroup of G contained in H. In this paper, we investigate the influence of s-supplemented primary subgroups in finite groups. Some new results about p-nilpotency of finite groups are obtained.

1. Introduction

Let *H* be a subgroup of *G*. Then, a subgroup *K* of *G* is called a *supplement* of *H* in *G*, if G = HK. It is of interest to study the structure

Keywords and phrases: soluble groups, Sylow subgroups, s-supplement, finite groups.

The authors are supported by the grant of NSFC (Grant # 10901133) and sponsored by Qing Lan Project and Natural Science Fund for Colleges and Universities in Jiangsu Province.

Received August 10, 2010; Revised October 17, 2010

© 2011 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 20D10, 20D20.

of the group by using supplement of subgroups of finite groups. In [7] and [8], Kegel proved that a group G is soluble, if every maximal subgroup of G either has a cyclic supplement in G or if some nilpotent subgroup of G has a nilpotent supplement in G. On the other hand, by the well-known Hall's theorem [6], a group G is soluble, if and only if every Sylow subgroup of G has a complement in G. Recently, in [12, 13], Wang obtained some new characterizations for soluble and supersoluble groups by using some c-normal and c-supplemented subgroups.

In this paper, we remove the normal supplement condition and replace the c-supplement assumption with the s-supplement assumption for the subgroups of G. We obtain the p-nilpotency of G and the related results.

All the groups in this paper are finite. Most of the notation is standard and can be found in [4] and [11].

Definition 1.1. A subgroup H of G is called *s*-supplemented in G, if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_{SG}$, where H_{SG} is the largest subnormal subgroup of G contained in H. In this case, K is said to be an *s*-supplement of H in G.

Recall that a subgroup H of G is said to be *c*-supplemented in G, if there exists a subgroup K of G such that G = HK and $H \cap K \leq H_{\overline{G}}$ [13]. A subgroup H is said to be *s*-normal in G, if there exists a subnormal subgroup N of G such that HN = G and $H \cap N \leq H_{SG}$ [14]. Hence, *s*-supplementation is a generalization of *s*-normality and *c*-supplementation. Moreover, we have *s*-supplementation cannot imply *s*-normality.

E

Example 1. $A_5 = C_5A_4$ and $C_5 \cap A_4 = 1$. Both C_5 and A_4 are *c*-supplemented in A_5 and so *s*-supplemented in A_5 , but neither of them is *s*-normal in A_5 , since A_5 is simple.

S-supplementation cannot imply c-supplementation.

Example 2. Let $G = Z_p \wr Z_q$, where Z_p and Z_q are the groups of prime p and q, respectively, (p < q). Then, evidently, every subgroup H of G such that $H \cong Z_p$ is s-normal and so s-supplemented in G, but not c-supplemented in G.

2. Preliminaries

For the sake of convenience, we first list here some known results, which will be useful in the sequel.

Lemma 2.1. Let G be a group. Then:

(1) If H is s-supplemented in G, $H \le M \le G$, then H is s-supplemented in M.

(2) Let $N \trianglelefteq G$ and $N \leqslant H$. Then H is s-supplemented in G, if and only if $H \mid N$ is s-supplemented in $G \mid N$.

(3) Let π be a set of primes. Let N be a normal π' -subgroup and H be a π -subgroup of G. If H is s-supplemented in G, then HN/N is s-supplemented in G/N. If furthermore N normalizes H, then the converse also holds.

Proof. The claims in (1)-(3) are easy exercises left to the reader.

Lemma 2.2 [10, Lemma 2.7]. If $L \triangleleft \triangleleft G$ and L is a p-subgroup, then $L \leq O_p(G)$.

Lemma 2.3. Let π be a set of prime divisor of |G|. If $G \in E_{\pi}$, then every subnormal subgroup and every composition factor of G belongs to E_{π} .

Proof. It is clear that every normal subgroup of G belongs to E_{π} when $G \in E_{\pi}$. For every subnormal subgroup K of G, there exists a subnormal series of G

$$K = K_0 \trianglelefteq K_1 \trianglelefteq \cdots \trianglelefteq K_{n-1} \trianglelefteq K_n = G.$$

Since $G \in E_{\pi}$, then $K_{n-1} \in E_{\pi}$ and K belongs to E_{π} by the induction. On the other hand, it is easy to know every quotient group of G belongs to E_{π} when $G \in E_{\pi}$. Similarly, every composition factor belongs to E_{π} by the induction. This completes the proof.

Lemma 2.4. Let G be a finite group and P be a Sylow p-subgroup of G, where p is a prime divisor of |G| such that (|G|, p-1) = 1. Suppose that there exists a maximal subgroup P_1 of P such that P_1 is s-supplemented in G. Then G is not a non-abelian simple group and $G \in D_{p'}$.

Proof. (1) $G \in D_{p'}$.

We prove this by induction on the order of G. Since P_1 is s-supplemented in G, there exists a subgroup K of G such that $P_1K = G$ and $P_1 \cap K \leq (P_1)_{SG}$.

If $P_1 \cap K = 1$, then $|K|_p = p$. Let K_p denote a Sylow *p*-subgroup of K. Then $N_K(K_p)/C_K(K_p)$ is isomorphic to a subgroup of $Aut(K_p)$. Hence, the order of $N_K(K_p)/C_K(K_p)$ must divide (|G|, p-1) = 1. Therefore, $N_K(K_p) = C_K(K_p)$ by Burnside's *p*-nilpotent theorem and hence K is *p*-nilpotent. It is clear that the normal *p*-complement $K_{p'}$ is a Hall p'- subgroup of G and hence $G \in E_{p'}$. If p is an odd prime, then G is soluble and hence $G \in D_{p'}$. If p = 2, then [3, Main Theorem] implies that $G \in C_{2'}$. By [1, P.547], if π is a set of odd primes and G satisfies E_{π} and $E_{\pi'}$, then $G \in D_{\pi'}$. Hence we have that $G \in D_{2'}$.

If $P_1 \cap K \neq 1$ and K < G, then $P_1 \cap K = (P_1)_{SG} \cap K \triangleleft \triangleleft K$. It is easy to see that $P_1 \cap K$ is s-supplemented in K. Since $|P \cap K : P_1 \cap K|$ $= |P : P_1| = p$, by the hypotheses, we have that $K \in D_{p'}$. With the similar argument, we have $G \in D_{p'}$.

Now, we may assume $P_1 \cap K \neq 1$ and K = G, i.e., $P_1 \triangleleft \triangleleft G$. If p is an odd prime, then G is soluble since (|G|, p-1) = 1 and hence $G \in D_{p'}$. If p = 2, then there exists a subnormal series of G such that $P_1 riangleq M_1 riangleq M_2 riangleq \cdots riangleq M_n = G$. It is easy to see that $|M_1 / P_1| = 2n_1$ or n_2 , where n_1 and n_2 are both odd numbers. Now, we have M_1 is soluble. By the same argument, we obtain that G is soluble. Therefore $G \in D_{p'}$.

(2) G is not a non-abelian simple group.

Assume that G is a non-abelian simple group. By assumption, there exists a subgroup K of G such that $G = P_1K$ and $P_1 \cap K \leq (P_1)_{SG} = 1$. In particular, $|G:K| = p^{\alpha}$, $\alpha \geq 1$. By [5, Theorem 1], we know that either K is a Hall p'-subgroup of G or G is isomorphic to $PSU_4(2) \cong PSP_4(3)$, and K is the parabolic subgroup of index 27 or G is isomorphic to A_n with $5 \leq n = p^r$, $r \geq 2$ and $K \cong A_{n-1}$. Clearly, K is not a Hall p'-subgroup of G since $|G:K| = |P_1:P_1 \cap K| \leq |P_1| < |P|$. If $G \cong PSU_4(2)$, then $|G| = 2^6 \cdot 3^4 \cdot 5$ and $|K| = 2^6 \cdot 3 \cdot 5$. By (1) and the condition, $G \in E_{p'}$ and there exists a Hall p'-subgroup $G_{p'}$ of G such that $|G_{p'}| = 2^6 \cdot 5$. Hence, we have $|G:G_{p'}| = 3^4$, contrary to [5, Theorem 1]. But in the last case, $|P_1| = n = p^r$, $(n!/2) = (12 \dots p^r)/2$. If r > 1, then $p^2 ||A_{n-1}|$ and $p^2 ||P:P_1|$. Therefore, G is not a non-abelian simple group.

The theorem is proved.

3. Main Results

Theorem 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p is a prime divisor of |G| with (|G|, p-1) = 1. Suppose that every maximal subgroup of P is s-supplemented in G, then $G / O_p(G)$ is p-nilpotent.

Proof. Assume that the theorem is false and choose G to be a counterexample of smallest order. By Lemma 2.4, we have $G \in E_{p'}$. Furthermore, we have

(1) $O_p(G) = 1$.

If $O_p(G) = P$, then $G / O_p(G)$ is a p'-group and of course, it is p-nilpotent, a contradiction. If $1 \le O_p(G) < P$, then $G / O_p(G)$ satisfies the hypotheses and the minimal choice of G implies that $G / O_p(G) \cong G / O_p(G) / O_p(G / O_p(G))$ is p-nilpotent, a contradiction.

(2) For every maximal subgroup P_1 of P, the *s*-supplement of P_1 is *p*-nilpotent.

Let P_1 be a maximal subgroup of P. By hypotheses, P_1 is s-supplemented in G. So, there exists a subgroup K_1 of G such that $G = P_1K_1$ and $P_1 \cap K_1 \leq (P_1)_{SG}$. By Lemma 2.2, we have that $P_1 \cap K$ $\leq (P_1)_{SG} \leq O_p(G) = 1$. Now $|K_1|_p = p$. Let K_{1p} denote the Sylow p-subgroup of K_1 . Then, $N_{K_1}(K_{1p})/C_{K_1}(K_{1p})$ is isomorphic to a subgroup of $Aut(K_{1p})$. Hence, the order of $N_{K_1}(K_{1p})/C_{K_1}(K_{1p})$ must divide (|G|, p-1) = 1. Therefore $N_{K_1}(K_{1p}) = C_{K_1}(K_{1p})$. Burnside's p-nilpotent theorem [11, 10.1.8] implies that K_1 is p-nilpotent.

(3) G is p-nilpotent.

Let P_1 be a maximal subgroup of P. By (1) and (2), there exists a p-nilpotent subgroup K_1 of G such that $G = P_1K_1$. Let $K_1 = K_{1p}K_{1p'}$ and $N = N_G(K_{1p'})$. Clearly, $K_1 \leq N$ and G = PN. If $P \leq N$, then N = G, a contradiction. So, we may assume that $P \cap N < P$. There exists a maximal subgroup P_2 of P such that $P \cap N \leq P_2$. By hypotheses, P_2 is s-supplemented in G. (2) indicates that the supplement K_2 of P_2 is p-nilpotent. We denote $K_2 = K_{2p}K_{2p'}$. Now both $K_{1p'}$ and $K_{2p'}$ are Hall p'-subgroup of G. Since (|G|, p-1) = 1, by Lemma 2.4, we have $G \in D_{p'}$, these two subgroups are conjugate in G. Say $K_{1p'} = (K_{2p'})^g$. Since $G = P_2K_2$ and $K_{2p'} \leq K_2$, we may choose $g \in P_2$. K_2^g normalizes $K_{2_{p'}}^g = K_{1_{p'}}$ and hence $K_2^g \leq N$. Now $G = (P_2K_2)^g = P_2N$. Therefore, $P = P \cap G = P_2(P \cap N) \leq P_2$. Since $P \cap N \leq P_2$, we have that $P \leq P_2$, a contradiction.

Based on the discussion as above and [2], $G / O_p(G)$ is *p*-nilpotent.

Lemma 3.2 [9, Lemma 2.4]. Let G be a finite group and p be a prime divisor of |G| such that $(|G|, p^2 - 1) = 1$. Assume that the order of G is not divisible by p^3 . Then G is p-nilpotent.

Theorem 3.3. Let G be a finite group and p be a prime divisor of |G|such that $(|G|, p^2 - 1) = 1$. Assume that every second maximal subgroup of the Sylow p-subgroup of P is s-supplemented in G, then $G / O_p(G)$ is soluble p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Furthermore, we have

(1) $O_p(G) = 1$.

If $O_p(G) = P$, then $G / O_p(G)$ is a p'-group and of course, it is p-nilpotent, a contradiction. If $O_p(G) = P_1$, where P_1 is the maximal subgroup of P, then $G / O_p(G)$ is p-nilpotent since (|G|, p-1) = 1 and $|G / O_p(G)|_p = p$, a contradiction. If $O_p(G) = P_2$, where P_2 is the second maximal subgroup of P, then $p^3 \nmid |G / O_p(G)|$. Hence, $G / O_p(G)$ is p-nilpotent by Lemma 3.2. If $1 < O_p(G) < P_2$, then $G / O_p(G)$ satisfies the hypotheses and the minimal choice of G implies that $G / O_p(G) \cong$ $G / O_p(G) / O_p(G / O_p(G))$ is p-nilpotent, a contradiction.

(2) |G| is divisible by p^3 .

If $p^3 \nmid |G|$, then G is p-nilpotent by Lemma 3.2, a contradiction.

(3) For every second maximal subgroup P_1 of a Sylow subgroup P of G, the *s*-supplement of P_1 is *p*-nilpotent.

Let P be a Sylow p-subgroup of G and P_1 be a second maximal subgroup of P. By hypotheses, P_1 is s-supplemented in G. So, there exists a subgroup K_1 of G such that $G = P_1K_1$ and $P_1 \cap K_1 \leq (P_1)_{SG}$. By Lemma 2.2, we have $P_1 \cap K_1 \leq (P_1)_{SG} \leq O_p(G) = 1$. Now $|K_1|_p = p^2$. By hypotheses and Lemma 3.2, we have K_1 is p-nilpotent.

(4) G is p-nilpotent.

Let $N = N_G(K_{1_{p'}})$ and $K_1 = K_{1_p}K_{1_{p'}}$. By (3), $K_1 \leq N$. So, we have $G = P_1K_1 = P_1N$. If N = G, then G is p-nilpotent, a contradiction. Let $P_1 \leq \overline{P_1} \leq P$, where $\overline{P_1}$ is a maximal subgroup of Sylow subgroup P of G. Hence, $G = P_1K_1 = \overline{P_1}K_1 = \overline{P_1}N$. If $\overline{P_1} \leq N$, then G is p-nilpotent, a contradiction. So, we may assume $\overline{P_1} \cap N < \overline{P_1}$. We may choose a maximal subgroup P_2 of $\overline{P_1}$ such that $\overline{P_1} \cap N < \overline{P_2}$. It is clear that P_2 is the second maximal subgroup of P. By (3), P_2 is s-supplemented in G and the supplement K_2 of P_2 is p-nilpotent. We denote $K_2 = K_{2p}K_{2p'}$. Since $(|G|, p^2 - 1) = 1$, [3, Main Theorem] or the odd order theorem [2] implies that $G \in C_{p'}$. Now both $K_{1_{p'}}$ and $K_{2_{p'}}$ are Hall p'-subgroup of G, these two subgroups are conjugate in G. Let $K_{1_{p'}} = (K_{2_{p'}})^g$. Since $G = P_2K_2$ and $K_2 \leq N_G(K_{2_{p'}})$, we may choose $g \in P_2$. K_2^g normalizes $K_{2_{p'}}^g = K_{1_{p'}}$ and hence $K_2^g \leq N$. Now $G = (P_2K_2)^g = P_2N$. Therefore $\overline{P_1} = \overline{P_1} \cap P_2N = P_2(\overline{P_1} \cap N) = P_2$, contrary to the condition.

The final contradiction completes our proof.

Theorem 3.4. Let G be a finite group. Then G is soluble, if and only if every Sylow subgroup of G is s-supplemented in G.

Proof. If G is soluble, then by [6, Main Theorem], every Sylow subgroup of G is complemented in G. It is clear that every Sylow subgroup of G is *s*-supplemented in G.

Conversely, assume that every Sylow subgroup P of G is *s*-supplemented in G. By [6, Main Theorem], we only need to prove that P is complemented in G. Let K be an *s*-supplement of P in G. Then G = PK and $P \cap K \leq P_{SG}$.

If $P \cap K = 1$, then *P* is complemented in *G*.

If $P \cap K \neq 1$, then $P \cap K = P_{SG} \cap K \triangleleft \triangleleft K$. Note that $|G|_p = |P|(|K|_p / |P_{SG} \cap K|)$, hence $|K|_p = |P_{SG} \cap K|$ and $P \cap K = P_{SG} \cap K \triangleleft K$. By the Schur-Zassenhaus theorem [11, Theorem 9.1.10], we have that $K = (P \cap K)K_{p'}$, where $K_{p'}$ is the Hall p'-subgroup of K. Now, $G = PK = P(P \cap K)K_{p'} = PK_{p'}$ and $P \cap K_{p'} = 1$. Therefore, P is complemented in G. The theorem is proved.

References

- [1] Z. Arad and E. Fisman, On finite factorizable groups, J. Algebra 86 (1984), 522-548.
- [2] W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
- [3] F. Gross, Conjugacy of odd order Hall subgroups, Bull. London Math. Soc. 19 (1987), 311-319.
- [4] W. Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [5] R. M. Guralnick, Subgroups of prime index in a simple group, J. Algebra 81 (1983), 304-311.
- [6] P. Hall, A characteristic property of soluble groups, J. London Math. Soc. 12 (1937), 188-200.
- [7] O. H. Kegel, Produkte nilpotenter gruppen, Arch. Math. (Basel) 12 (1961), 90-93.
- [8] O. H. Kegel, On Huppert's Characterization of Finite Supersoluble Groups, Proc. Internat. Conf. Theory Groups, Canberra, 1965, New York, (1967), 209-215.

HONGWEI BAO and LONG MIAO

- L. Miao, On complemented subgroups of finite groups, Czech. Math. J. 56(3) (2006), 1019-1028.
- [10] L. Miao, On weakly s-permutable subgroups of finite groups, Bull. Braz. Math. Soc. 412 (2010), 223-235.
- [11] D. J. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin/New York, 1993.
- [12] Y. Wang, C-normality of groups and its properties, J. Algebra 78 (1996), 101-108.
- Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra 224 (2000), 467-478.
- [14] X. Zhang, W. Guo and K. P. Shum, S-normal subgroups of finite groups, J. Appl. Algebra Discrete Struct. 1(2) (2003), 99-108.

70